Ionization constants of cholinesterase-reactivating bispyridinium aldoximes

Sir,-Since most pharmacologically active substances contain acidic or basic molecular groups, or both, which are ionized to a different degree at physiological pH , ionization constants are of particular biological importance.

In a number of substances with pK_{a} values within the physiological range, biological activity has been shown to depend on the pH of the medium, thus reflecting the actual concentrations of the active molecular species (for a review see Albert, 1960).

Quaternary pyridine aldoximes are reactivators of organophosphorus poisoned acetylcholinesterase. Wilson, Ginsburg \& Quan (1958) suggested the oxime anion to be the "reactive species". Theoretically, the pK_{a} should be low enough to yield a sufficient concentration of anions at physiological pH . On the other hand changes in pK_{a} have been reported to affect reactivating potency to a small extent, giving rise to factors of only $2-3$ for one pH unit. These findings have been reported to apply to most reactivations (Wilson \& others, 1958).

The pK_{a} values of a number of mono-oximes have been determined by potentiometric titration (Wilson \& others, 1958; Hobbiger, 1963). Wilson \& Ginsburg (1958) titrated bisquaternary dibasic oximes for analytical reasons. In their titration curves they observed only one break. This led to the assumption that the pH at one-half neutralization should be equal to the "average" of the two supposed pK_{a} values. Although such an average value bears only analytical consequences, some authors (Hobbiger, 1963; Engelhard \& Erdmann, 1964) refer to it as a true pK_{a} value.

Engelhard \& Erdmann (1964) based their calculations of the percentage ionized on corresponding values. According to their figures the percentage ionization of TMB-4 is 19% and of obidoxime is 28% at pH 7.5 . However,

A

B

Fig. 1. Titration curves $\left(0.01 \mathrm{~m}, 0 \cdot 1 \mathrm{~N} \mathrm{KOH}, 20^{\circ}\right.$ of (A) piperazine diperchlorate $\left(\mathrm{pK}_{\mathrm{a}_{1}}=5.54 \pm 0.006 ; \mathrm{pK}_{\mathrm{a}_{2}}=9.79 \pm 0.01\right.$) and succinic acid ($\mathrm{pK}_{\mathrm{a}_{1}}=4.09 \pm 0.03$; $\mathrm{pK}_{\mathrm{a}_{2}}=5.42 \pm 0.03$) (Albert \& Serjeant, 1962) and (B) 2-PAM, TMB-4 (1, 1^{\prime}-trime-thylenebis(4-formylpyridinium bromide) dioxime and obidoxime (Toxogonin; bis(4-hydroxyiminomethyl pyridinium-(1)-methylether dichloride. ()) One-half neutralization.
the titration midpoint, i.e. the pH at one-half neutralization, may only be set as equal to the pK_{a} where there is only one ionizing group. In molecules with more than one ionizing group, the less basic may be completely ionized at "one-half neutralization", whereas the more basic group may remain entirely uncharged, as for example in piperazine diperchlorate. (Fig. 1A)

According to the ratio of the respective ionization constants the titration curve of a dibasic electrolyte will either have an inflexion where $K_{1}>16 \mathrm{~K}_{2}$, or yield a straight line where $\mathrm{K}_{1}=16 \mathrm{~K}_{2}$, or resemble that of a monobasic compound where $\mathrm{K}_{1}<16 \mathrm{~K}_{2}$ (Auerbach \& Smolczyk, cited by Britton, 1955) (Fig. 1). From titration curves of quaternary bispyridine aldoximes the presence of two adjacent ionization constants may be inferred. The endpoint of the first stage of ionization is not discernible, because at this instant titration of the second group has already begun (Fig. 1B). In polyvalent electrolytes pK_{a} values may only be calculated by means of the Henderson-Hasselbalch equation, if they are separated by more than 2.7 pH units ($\mathrm{K}_{1}>500 \mathrm{~K}_{2}$). Accurate separation of overlapping pK_{a} values, however, may be obtained by means of a method which is due to Britton (1955).

As this procedure involves extensive calculations, a programme has been developed for use on an electronic calculator (Bieger, Ehrich \& Wassermann, 1967). By this means, ionization constants of a series of dioximes have been determined (Table 1). The two pK_{a} values of TMB-4, for instance have been found to be 7.78 and 8.61 respectively; for obidoxime these values are 7.54 and 8.24. Such figures permit the calculation of the true proportion of anions to molecules; e.g. in obidoxime the more acidic group is 50% and the less acidic group 17% ionized at pH 7.5 . In TMB-4 the corresponding figures are 33% and 7% (Bieger \& Wassermann, 1967).

These findings raise the question of the significance of the second oxime group. Comparison with related monoximes shows that the influence of an additional oxime group is consistent with an increase in acidity of the first group. On an

TABLE 1. IONIZATION CONSTANTS OF SOME BISPYRIDINIUM ALDOXIMES

(a)$\mathrm{R}=-\left[\mathrm{CH}_{2}\right]_{n}-$	pKa_{1}	pKa_{3}	Percentage ionized at pH 7.4	
			1	2
I $n=2$	7.58 ± 0.01	8.34 ± 0.01	39.83	10.33
	7.78 ± 0.01	8.61 ± 0.03	29.47	5.80
III $\quad \begin{array}{llll} \\ \text { IV }\end{array}$	7.93 ± 0.01	8.66 ± 0.01	22.78	$5 \cdot 17$
	7.93 ± 0.01 7.98 ± 0.01	8.67 ± 0.01 8.69 ± 0.05	22.69 20.85	$5 \cdot 12$ $\mathbf{2} 70$
VI R: $-\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{2}-$	7.54 ± 0.01	8.24 ± 0.02	41.79	12.73
(b)				
VII $\mathrm{n}=3 \quad$..	8.59 ± 0.01	9.30 ± 0.03	6.08	
VIII $\mathrm{n}=4 \quad .$.	8.65 立 0.01	9.46 ± 0.01	$5 \cdot 34$	0.86
$\begin{array}{llll}\text { IX } & n=6 & \cdots & \cdots \\ & \cdots & \cdots\end{array}$	8.70 ± 0.01	9.50 ± 0.01	4.75	0.78

LETTERS TO THE EDITOR, J. Pharm. Pharmac., 1967, 19, 846
TABLE 2. reactivity and degree of ionization of a series of pyridinium-4-aldoximes

Reactivator	Multiples of reactivation velocity of 2-PAM (diethylphosphoryl-AChE, acc. to Hobbiger \& Sadler, 1959)	pKa	$\begin{aligned} & \text { Percentage } \\ & \text { ionized } \\ & \text { (oxime anion) } \\ & \text { at } \mathrm{pH} 7.4 \end{aligned}$
I			
	$\frac{1}{33}$	8.2 (Hobbiger \& others, 1960)	6\%
II			
	8	$\underset{\text { (Hobbiger, }}{8.0} 193 \text {) }$	20\%
III TMB-4			
	22	$\begin{aligned} & \mathrm{pKa}_{1}=7.78 \\ & \mathrm{pKa}_{\mathrm{g}}=8.61 \end{aligned}$	$\begin{gathered} 29.5 \% \\ 5.8 \% \end{gathered}$

average, the 4-pyridine aldoximes-favoured by a possible quinonoid structureare 0.7 pH units more acidic than the corresponding 3-aldoximes. Moreover, acidity may be promoted by a hydrogen bond between the ionized and the uncharged oxime group (Becker, 1965), since extension of the chain linking the two pyridinium nitrogens results in a decrease of the acidity of both oxime groups. For the above reasons, at physiological pH the proportion of active oxime anions will be higher in bispyridinium aldoximes than in corresponding monoaldoximes.

The sequence of pyridinium aldoximes (I-III) shown in Table 2 is conspicuous for an increasing ability to reactivate acetylcholinesterase inhibited by tetraethyl pyrophosphate (TEPP) or paraoxon in vitro. The marked superiority of compound II to compound I (factor 120) may be due not only to an additional binding contribution at an optimal distance, but also to an increase in ionization. Introduction of a second oxime group again enhances the proportion of oxime anions and augments the rate of reactivation by a factor of $2 \cdot 5$. These data, however, do not permit a decisive conclusion, whether TMB-4 owes its superiority exclusively to the increased ionization of the first oxime group or to the presence of a second oxime group, possessing an additional reactivating function.

Department of Pharmacology,
Christian-Albrechts-University, Hospitalstr. 4-6,
Kiel, W. Germany
September 4, 1967

Detlef Bieger
Otmar Wassermann

References

Albert, A. (1960). Selective Toxicity. London: Methuen.
Albert, A. \& Serjeant, E. P. (1962). Ionization constants of Acids and Bases. London: Methuen.
Becker, H. (1965). Einführung in die Elektronentheorie organisch chemischer Reaktionen. 2nd edn, p. 60. Berlin: VEB Deutscher Verlag der Wissenschaften.
Bieger, D., Ehrich, D. \& Wassermann, O. (1967). Arzneimittel-Forsch., in the press.
Bieger, D. \& Wassermann, O. (1967). Naunyn-Schmiedebergs Arch. exp. Path., Pharmak. 257, 267-268.
Britton, H. Th. S. (1955). Hydrogen Ions, Vol. 1, p. 222. London: Chapman \& Hail.
Engelhard, N. \& Erdmann, W. D. (1964). Arzneimittel-Forsch., 14, 870-875.
Hobbiger, F., Pitman, M. \& Sadler, P. W. (1960). Biochem. J., 75, 363-372.
Hobbiger, F. \& Sadler, P. W. (1959). Br. J. Pharmac. Chemother., 14, 192-201.
Hobbiger, F. (1963). Handb. exp. Pharmak., 15, 937.
Wilson, I. B. \& Ginsburg, S. (1958). Biochem. Pharmac., 1, 200-206.
Wilson, I. B., Ginsburg, S. \& Quan, C. (1958). Archs Biochem. Biophys., 77, 286-296.

Mathematics of three-phase in vitro absorption models

Sir, -The use of three-phase in vitro models and compartmental kinetics to study the drug absorption process would appear to be of great value to pharmacy. Recent reports by Perrin $(1966,1967)$, who used such a model, contain an error. Perrin pointed our that if the volumes of the compartments within a system differed, they must be taken into account in any kinetic analysis of data obtained from the system. The example used was for the following set of consecutive first order processes:

$$
\mathrm{A} \xrightarrow{\mathrm{k}_{1}} \mathrm{~B} \xrightarrow{\mathrm{k}_{2}} \mathrm{C}
$$

in which A, B and C represent the concentrations in three compartments with volumes V_{A}, V_{B} and V_{C}. The differential equations describing the kinetics were then given as:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{A}} \mathrm{dA} / \mathrm{dt}=-\mathrm{V}_{\mathrm{A}} \mathrm{k}_{1} \mathrm{~A} \quad . . \quad(1) \\
& \mathrm{V}_{\mathrm{B}} \mathrm{~dB} / \mathrm{dt}=\mathrm{V}_{\mathrm{A}} \mathrm{k}_{1} \mathrm{~A}-\mathrm{V}_{\mathrm{B}} \mathrm{k}_{2} \mathrm{~B} \quad . \quad . . \quad \text { (2) } \\
& \mathrm{V}_{\mathrm{C}} \mathrm{dC} / \mathrm{dt}=\mathrm{V}_{\mathrm{B}} \mathrm{k}_{2} \mathrm{~B} \quad . . \quad . \quad \text { (3) }
\end{aligned}
$$

Using the conditions that $V_{A}=V_{C}$, and that at time zero, $A=A_{0}, B=C=0$, the integrated equations were given as:

$$
\begin{align*}
& \mathrm{A}=\mathrm{A}_{0} \exp ^{-\mathrm{k}_{1}} \tag{4}\\
& B=\frac{V_{A} k_{1} A_{0}}{V_{B}\left(k_{2}-V_{A} k_{1} / V_{B}\right)}\left(\exp ^{-V_{A} k_{1} t}-\exp ^{-k_{2} t}\right) \tag{5}\\
& C=A_{0}\left[1-\frac{1}{k_{2}-V_{A} k_{1} / V_{B}}\left(k_{2} \exp ^{-k_{1} t}-k_{1} \exp ^{-k_{2} t}-\frac{V_{A}{ }^{k} 1}{V_{B}} \exp ^{-k_{1} t}+\right.\right. \\
& \left.k_{1} \exp ^{-v_{A} k_{1} / v_{B}}\right) \tag{6}
\end{align*}
$$

Eqn 4 results from a straightforward integration of eqn 1 and is correct as given. Eqns 5 and 6, however, cannot be obtained by integrating the corresponding differential eqns 2 and 3. The volume terms in the integrated equations are inconsistent with the differential equations. This can be shown by inserting eqn 4 into eqn 2 to give:

$$
\begin{equation*}
\mathrm{dB} / \mathrm{dt}=\frac{\mathrm{V}_{\mathrm{A}}}{\mathrm{~V}_{\mathrm{B}}} \mathrm{k}_{1} \mathrm{~A}_{0} \exp ^{-\mathrm{k}_{1} \mathrm{t}}-\mathrm{k}_{2} \mathrm{~B} \tag{7}
\end{equation*}
$$

or $\mathrm{dB}+\mathrm{k}_{2} \mathrm{Bdt}=\frac{\mathrm{V}_{\mathrm{A}}}{\mathrm{V}_{\mathrm{B}}} \mathrm{k}_{1} \mathrm{~A}_{0} \exp ^{-\mathrm{k}_{1}{ }^{t} \mathrm{dt}}$
which is a linear differential equation of the first order. It can, therefore be

